Preliminary communication

NOVEL COMPLEXES OF MANGANESE WITH PHENYLVINYLIDENE AS A LIGAND

A.N. NESMEYANOV, G.G. ALEKSANDROV, A.B. ANTONOVA, K.N. ANISIMOV, N.E. KOLOBOVA and Yu.T. STRUCHKOV*
Institute of Organo-Element Compounds, Academy of Sciences of the U.S.S.R., Vavilov Str. 28, Moscow, B-312 (U.S.S.R.)

(Received February 10th, 1976)

Summary

Three novel stable complexes of manganese were prepared by interaction of [$\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{THF})\right]$ with phenylacetylene. X-ray structure analysis of two of the complexes established the presence of a phenylvinylidene ligand. In $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{C}=\mathrm{CHPh})\right]$ this ligand forms an unusual double $\mathrm{Mn}=\mathrm{C}$ bond and in $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mn}_{2}(\mathrm{CO})_{4}(\mathrm{C}=\mathrm{CHPh})\right]$ it acts as a bridge strengthening the $\mathrm{Mn}-\mathrm{Mn}$ bond.

It was reported [1] that a photochemical reaction of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right.$] with phenylacetylene led to a very unstable π-acetylenic complex I . We carried out [2] the reaction of phenylacetylene with $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{THF})\right]$ and by chromatography with $\mathrm{Al}_{2} \mathrm{O}_{3}$ of a reaction mixture, isolated three stable complexes, viz. II (yield 7\%), III (2\%) and IV (12\%). According to the composition of the complexes this reaction can be represented by Scheme 1.

Compound II is dark-red crystalline, m.p. $64^{\circ} \mathrm{C}$. It is characterized by higher CO stretching frequencies in the infrared spectrum ($\nu(\mathrm{CO}) 2008,1954 \mathrm{~cm}^{-1}$, in cyclohexane) compared with those of the isomeric π-acetylene complex I (1981, $1921 \mathrm{~cm}^{-1}$) and a series of other complexes of the type $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{2} \mathrm{~L}\right]$ with $\mathrm{L}=\mathrm{Ph}_{3} \mathrm{P},(\mathrm{PhO})_{3} \mathrm{P}, \pi$-ethylene, π-acetylene [1,3]. This indicates a considerable π-accepting ability of the $\mathrm{C}_{8} \mathrm{H}_{6}$ ligand.

The binuclear complex III crystallizes in violet prisms with m.p. $144^{\circ} \mathrm{C}$. Its infrared spectrum in cyclohexane contains $\nu(\mathrm{CO})$ bands at 2006, 1981, 1952 and $1928 \mathrm{~cm}^{-1}$.

In the mass spectra of II and III molecular ions were found with m/e 278 and 454, respectively. $\mathrm{C}_{8} \mathrm{H}_{6}$ ligands in II and III are more strongly bound to the metal than the CO-groups.

To elucidate the structures of II and III unequivocally we undertook their X-ray study. The corresponding investigation of IV is now in progress.

```
\(\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{THF})+\mathrm{PhC} \equiv \mathrm{CH} \rightarrow\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{PhC} \equiv \mathrm{CH}) \rightarrow\)
    (I)
\(\rightarrow\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{8}\right) \mathrm{Mnn}(\mathrm{CO})_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6}\right)+\left(\eta^{5}-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{Mn}_{2}(\mathrm{CO})_{4}\left(\mathrm{C}_{8} \mathrm{H}_{6}\right)+\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mn}_{2}\left(\mathrm{CO}_{4}\left(\mathrm{C}_{16} \mathrm{H}_{10}\right)\right.\)
    (II)
    (III)
    (IV)
```

SCHEME 1

Crystal structure data. Crystals of II are orthorhombic, $a=10.492(2), b=$ $33.038(6), c=7.475(2) \AA, D_{m}=1.42, D_{c}=1.433 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=8$, space group Pccn. Crystals of III are also orthorhombic, $a=15.336(3), b=15.391$ (3), $c=$ 7.998 (1) $\AA, D_{m}=1.58, D_{c}=1.606 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=4$, space group $P 2_{1} 2_{1} 2_{1}$. Intensities were measured with an automatic four-circle Hilger \& Watts diffractometer (copper radiation, graphite monochromator). The structures were solved by the heavy atom method on the basis of 600 (II) and 1200 (III) reflections with $F^{2} \geqslant 3 \sigma$ and refined by an anisotropic block-diagonal least-squares procedure, $R=0.093$ (II) and 0.071 (III). Relatively small numbers of reflections and only moderate accuracy of results are due to rapid radiation damage of crystals during an X-ray exposure.

Fig. 1. The molecular structure of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{C}=\mathrm{CHPh})\right]$ with main bond lengths and angles.

The molecular structure of II is shown in Fig. 1. This complex has an unusual monodentate phenylvinylidene ligand which arises due to a hydrogen migration to the neighbouring carbon atom in the π-coordinated $\mathrm{PhC} \equiv \mathrm{CH}$. Thus II is (η^{5}-cyclopentadienyl)(phenylvinylidene)manganese dicarbonyl. The $\mathrm{MnC}(3) \mathrm{C}(4)$ fragment represents an almost strictly linear metalallene system. The angle at C (3) is equal to $174(2)^{\circ}$, the angle at $C(4)$ is increased to $132(2)^{\circ}$-due to steric repulsion $C(3) \cdots C(6)$ (the corresponding distance is only $3.13(3) \AA$). The $C(3)=C(4)$ distance of $1.34(3) \AA$ corresponds to the double bond. The $M n=C(3)$ bond (1.68(2) \AA) could also be considered a double bond since it is shorter than a Mn-Alk σ-bond (2.16 A) [4] and even shorter than the Mn-C(carbene) bond (1.88 \AA) in $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{2}\{\mathrm{C}(\mathrm{Ph}) \mathrm{COPh}\}\right]$ [5]. Taking into account the difference in Mn and Mo covalent radii, which is equal [4] to ca. $0.20 \AA$, this Mn=C double bond is close in length to the double $\mathrm{Mo}=\mathrm{C}$ bond (1.83 A) in $\left.\left.\left[\mathrm{MoCl}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\} \mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}\right\}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right]$ with the dicyanovinylidene ligand [6]. The metalallene system is almost coplanar with the phenyl ring (the torsional angle around the $C(4)-C(5)$ bond is equal to 10°).

Fig. 2. The molecular structure of $\left[(\mu-\mathrm{C}=\mathrm{CHPh})\left\{\mathrm{Mn}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]$ with main bond lengths and angles.
In the binuclear complex III (Fig. 2), μ-phenylvinylidene-bis (η^{5}-cyclopentadienylmanganese dicarbonyl), two ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Mn}(\mathrm{CO})_{2}$ fragments are connected by the $\mathrm{Mn}-\mathrm{Mn}$ bond of 2.734(2) \AA and the bridging phenylvinylidene ligand. Its geometry (Mn-C 1.94(1) and 1.99(1) \AA, angle $\mathrm{Mn}-\mathrm{C}-\mathrm{Mn} 88.0(5)^{\circ}$) is close to that of the dicyanovinylidene bridge in [cis- $\left.\mathrm{Fe}_{2}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mu-\mathrm{CO})\left[\mu-\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}\right\}\right]$ [7] ($\mathrm{Fe}-\mathrm{C} 1.96$ and $1.97 \AA$, angle $\mathrm{Fe}-\mathrm{C}-\mathrm{Fe} 84^{\circ}$). This similarity is explained by the closeness of Mn and Fe covalent radii [4].

The torsional angles around $C(5)-C(6)$ and $C(6)-C(7)$ bonds are equal to 7 and 11° respectively. Thus just as in II there is a pronounced tendency to conserving of planarity despite a steric repulsion between the Ph ring and the $\mathrm{Mn}(1)$ $(\mathrm{CO})_{2}$ fragment causing bond angle distortions at $\mathrm{C}(5), \mathrm{C}(6)$ and $\mathrm{C}(7)$. Relative to the $\mathrm{Mn}-\mathrm{Mn}$ bond, CO-groups have different orientations : the angles $\mathrm{Mn}(2)-$ $\mathrm{Mn}(1)-\mathrm{C}(1) 77(1)^{\circ}$ and $\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(3) 79(1)^{\circ}$ are considerably smaller than $\mathrm{Mn}(2)-\mathrm{Mn}(1)-\mathrm{C}(2) 100(1)^{\circ}$ and $\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(4) 104(1)^{\circ}$. The $\mathrm{Mn}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ fragments are in trans-position in respect to the metal-metal bond and the planar cyclopentadienyl ligands are practically parallel to each other (dihedral angle is 9°).

References

1 W. Strohmeier and H. Hellmann, Chem. Ber., 98 (1965) 1598.
2 A.N. Nesmeyanov, A.B. Antonova, N.E. Kolobova and K.N. Anisimov, Izv. Akad. Nauk SSSR, Ser. Kbim., (1974) 2873.

3 E.O. Fischer and M. Herberhold, Essays in Coordination Chemistry, Exper. Suppl. IX. Basel, Birkhäuser Verlaǵ, 1954. S. 259.
4 M.R. Churchill, Perspectives in Structural Chemistry, vol. III. New York-LondonSydney-Toronto. 1970. p. $91-164$.

5 A.D. Redhouse, J. Organometal. Chem., 99 (1975) C29.
6 R.M. Kirchner and J.A. Thers-Inorg. Chem., 13 (1974) 1667.
7 R:M. Kirchner and J.A. Tbers, J. Organometal. Chem., 82 (1974) 243.

